Active Lattices Determine Aw*-algebras

نویسندگان

  • CHRIS HEUNEN
  • MANUEL L. REYES
چکیده

We prove that AW*-algebras are determined by their projections, their symmetries, and the action of the latter on the former. We introduce active lattices, which are formed from these three ingredients. More generally, we prove that the category of AW*-algebras is equivalent to a full subcategory of active lattices. Crucial ingredients are an equivalence between the category of piecewise AW*-algebras and that of piecewise complete Boolean algebras, and a refinement of the piecewise algebra structure of an AW*-algebra that enables recovering its total structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutativity as a Colimit

We give substance to the motto “every partial algebra is the colimit of its total subalgebras” by proving it for partial Boolean algebras (including orthomodular lattices), the new notion of partial C*-algebras (including noncommutative C*-algebras), and variations such as partial complete Boolean algebras and partial AW*-algebras. Both pairs of results are related by taking projections. As cor...

متن کامل

QUANTALE-VALUED SUP-ALGEBRAS

Based on the notion of $Q$-sup-lattices (a fuzzy counterpart of complete join-semilattices valuated in a commutative quantale), we present the concept of $Q$-sup-algebras -- $Q$-sup-lattices endowed with a collection of finitary operations compatible with the fuzzy joins. Similarly to the crisp case investigated in cite{zhang-laan}, we characterize their subalgebras and quotients, and following...

متن کامل

Spectral and Polar Decomposition in AW*-Algebras

The spectral decomposition of normal linear (bounded) operators and the polar decomposition of arbitrary linear (bounded) operators on Hilbert spaces have been interesting and technically useful results in operator theory [3, 9, 13, 20]. The development of the concept of von Neumann algebras on Hilbert spaces has shown that both these decompositions are always possible inside of the appropriate...

متن کامل

Regularity in residuated lattices

In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012